Fundamentals of Statistical Testing

Lecture 1

Dr Milan Valášek
24 January 2022

Housekeeping

- Welcome from Jennifer and Milan
- Familiarise yourself with Canvas and AnD website
- Come to practicals and bring laptops
- Help desk sessions from this week (sign up on Canvas)
- More info in this week's practical
- It won't be easy so do put in the hours!

Overview

- Recap on distributions
- More about the normal distribution
- Sampling
- Sampling distribution
- Standard error
- Central Limit Theorem

Objectives

After this lecture you will understand

- that there exist mathematical functions that describe different distributions
- what makes the normal distribution normal and what are its properties
- how random fluctuations affect sampling and parameter estimates
- the function of the sampling distribution and the standard error
- the Central Limit Theorem

With this knowledge you'll build a solid foundation for understanding all the statistics we will be learning in this programme!

It's all Greek to me!

- μ is the population mean
- \bar{x} is the sample mean
- $\hat{\mu}$ is the estimate of the population mean
- Same with SD: σ, s, and $\hat{\sigma}$
- Greek is for populations, Latin is for samples, hat is for population estimates

Recap on distributions

- Numerically speaking, the number of observations per each value of a variable
- Which values occur more often and which less often
- The shape formed by the bars of a bar chart/histogram

Known distributions

- Some shapes are "algebraically tractable", e.g., there is a maths formula to draw the line
- We can use them for statistics

The normal distribution

- AKA Gaussian distribution, The bell curve
- The one you need to understand
- Symmetrical and bell-shaped
- Not every symmetrical bell-shaped distribution is normal!
- It's also about the proportions
- The normal distribution has fixed proportions and is a function of two parameters, μ (mean) and σ (or SD; standard deviation)

The normal distribution

- Peak/centre of the distribution is its mean (also mode and median)
- Changing mean (centring) shifts the curve left/right
- $S D$ determines steepness of the curve (small $\sigma=$ steep curve)
- Changing $S D$ is also known as scaling

Area below the normal curve

- No matter the particular shape of the given normal distribution, the proportions with respect to $S D$ are the same
- $\sim \mathbf{6 8 . 2} \%$ of the area below the curve is within ± 1 SD from the mean
- $\sim 95.4 \%$ of the area below the curve is within ± 2 SD from the mean
- $\sim 99.7 \%$ of the area below the curve is within $\pm 3 S D$ from the mean
- We can calculate the proportion of the area with respect to any two points

Area below the normal curve

- Say we want to know the number of SDs from the mean beyond which lie the outer 5% of the distribution

$$
\text { qnorm }(p=.025, \text { mean }=0, \mathrm{sd}=1) \text { Z lower cut-off }
$$

\#\# [1] -1.959964
qnorm($\mathrm{p}=.975$, mean $=0, \mathrm{sd}=1)$ \# upper cut-off

Critical values

- If $S D$ is known, we can calculate the cut-off point (critical value) for any proportion of normally distributed data
qnorm(p $=.005$, mean $=0$, sd $=1$) \# lowest .5\%
\#\# [1] -2.575829
qnorm(p $=.995$, mean $=0$, sd $=1$) \# highest . 5%
\#\# [1] 2.575829
\# most extreme 40\% / bulk 60\%
qnorm($p=.2$, mean $=0, s d=1$)
\#\# [1] -0.8416212
qnorm($p=.8$, mean $=0, s d=1)$
\#\# [1] 0.8416212
- Other known distributions have different cut-offs but the principle is the same

Sampling from distributions

- Collecting data on a variable = randomly sampling from distribution
- The underlying distribution is often assumed to be normal
- Some variables might come from other distributions
- Reaction times: log-normal distribution
- Number of annual casualties due to horse kicks: Poisson distribution
- Passes/fails on an exam: binomial distribution

Sampling from distributions

- Samples from the same population differ from one another

```
# draw a sample of 10 from a normally distributed
```

\# population with mean 100 and sd 15
$\operatorname{rnorm}(\mathrm{n}=6$, mean $=100, \mathrm{sd}=15)$
\#\# [1] $101.61958 \quad 80.95560 \quad 89.62080 \quad 96.04378$ 106.40106 $\quad 86.21514$
\# repeat
rnorm(6, 100, 15)
\#\# [1] $80.31573107 .63193 \quad 85.82520 \quad 99.95288 \quad 93.55956 \quad 74.73945$

Sampling from distributions

- Statistics (\bar{x}, s, etc.) of two samples will be different
- Sample statistic (e.g., \bar{x}) will likely differ from the population parameter (e.g., μ)

```
sample1 <- rnorm(50, 100, 15)
sample2 <- rnorm(50, 100, 15)
mean(sample1)
## [1] 98.56429
mean(sample2)
## [1] 105.4175
```


Sampling from distributions

- Statistics (\bar{x}, s, etc.) of two samples will be different
- Sample statistic (e.g., \bar{x}) will likely differ from the population parameter (e.g., μ)

Sampling distribution

- If we took all possible samples of a given size (say $N=50$) from the population and each time calculated \bar{x}, the means would have their own distribution
- This is the sampling distribution of the mean
- Approximately normal

Centred around the true population mean, μ
-

- Every statistic has its own sampling distribution (not all normal though!)

Sampling distribution

x_bar <- replicate(100000, mean(rnorm(50, 100, 15))) mean(x_bar)
\#\# [1] 99.99395

Standard error

- Standard deviation of the sampling distribution is the standard error
sd(x_bar)
\#\# [1] 2.122072
- Sampling distribution of the mean is approximately normal: $\sim 68.2 \%$ of means of samples of size 50 from this population will be within ± 2.12 of the true mean

Standard error

- Standard error can be estimated from any of the samples

$$
\widehat{S E}=\frac{S D}{\sqrt{N}}
$$

samp <- rnorm(50, 100, 15)
sd(samp)/sqrt(length(samp))
\#\# [1] 1.872102
\# underestimate compared to actual SE
sd(x_bar)
\#\# [1] 2.122072

- If $\sim 68.2 \%$ of sample means lie within ± 1.87, then there's a $\sim 68.2 \%$ probability that \bar{x} will be within ± 1.87 of μ
mean(samp)
\#\# [1] 98.22903

Standard error

- SE is calculated using N : there's a relationship between the two

Standard error

- That is why larger samples are more reliable!

Standard error

- Allows us to gauge the resampling accuracy of parameter estimate (e.g., $\hat{\mu}$) in sample
- The smaller the SE, the more confident we can be that the parameter estimate ($\hat{\mu}$) in our sample is close to those in other samples of the same size
- We don't particularly care about our specific sample: we care about the population!

The Central Limit Theorem

- Sampling distribution of the mean is approximately normal
- True no matter the shape of the population distribution!
- This is the Central Limit Theorem
- "Central" as in "really important" because, well, it is!

CLT in action

CLT in action

Approximately normal

- As N gets larger, the sampling distribution of \bar{x} tends towards a normal distribution with mean $=\mu$ and $S D=\frac{\sigma}{\sqrt{N}}$

$$
N=5 ; S E=0.13
$$

$$
N=30 ; S E=0.05
$$

Take-home message

- Distribution is the number of observations per each value of a variable
- There are many mathematically well-described distributions
- Normal (Gaussian) distribution is one of them
- Each has a formula allowing the calculation of the probability of drawing an arbitrary range of values

Take-home message

- Normal distribution is
- continuous
- unimodal
- symmetrical
- bell-shaped
- it's the right proportions that make a distribution normal!

In a normal distribution it is true that
-

- $\sim \mathbf{6 8 . 2 \%}$ of the data is within $\pm 1 S D$ from the mean
- $\sim 95.4 \%$ of the data is within $\pm 2 S D$ from the mean
- $\sim 99.7 \%$ of the data is within $\pm 3 S D$ from the mean
- Every known distribution has its own critical values

Take-home message

- Statistics of random samples differ from parameters of a population
- As N gets bigger, sample statistics approaches population parameters
- Distribution of sample parameters is the sampling distribution
- Standard error of a parameter estimate is the SD of its sampling distribution
- Provides margin of error for estimated parameter
- The larger the sample, the less the estimate varies from sample to sample

Take-home message

- Central Limit Theorem
- Really important!
- Sampling distribution of the mean tends to normal even if population distribution is not normal
- Understanding distributions, sampling distributions, standard errors, and CLT it most of what you need to understand all the stats techniques we will cover

