

Fundamentals of Statistical Testing

Lecture 1

Dr Milan Valášek 24 January 2022

Housekeeping

- · Welcome from Jennifer and Milan
- · Familiarise yourself with Canvas and AnD website
- · Come to practicals and bring laptops
- Help desk sessions from this week (sign up on Canvas)
- More info in this week's practical
- It won't be easy so do put in the hours!

Overview

- Recap on distributions
- · More about the normal distribution
- Sampling
- Sampling distribution
- Standard error
- Central Limit Theorem

Objectives

After this lecture you will understand

- that there exist mathematical functions that describe different distributions
- · what makes the normal distribution normal and what are its properties
- · how random fluctuations affect sampling and parameter estimates
- · the function of the sampling distribution and the standard error
- the Central Limit Theorem

With this knowledge you'll build a solid foundation for understanding all the statistics we will be learning in this programme!

1	
1	

It's all Greek to me!

- μ is the *population* mean
- \bar{x} is the *sample* mean
- $\hat{\mu}$ is the **estimate** of the *population* mean
- Same with SD: σ , s, and $\hat{\sigma}$
- Greek is for populations, Latin is for samples, hat is for population
 estimates

Recap on distributions

- Numerically speaking, the number of observations per each value of a variable
- Which values occur more often and which less often
- The shape formed by the bars of a bar chart/histogram

Known distributions

- Some shapes are "algebraically tractable", *e.g.*, there is a maths formula to draw the line
- We can use them for statistics

The normal distribution

- AKA Gaussian distribution, The bell curve
- The one you need to understand
- · Symmetrical and bell-shaped
- Not every symmetrical bell-shaped distribution is normal!
- It's also about the proportions
 - The normal distribution has fixed proportions and is a function of two parameters, μ (mean) and σ (or SD; standard deviation)

8	I	3	1

- · Peak/centre of the distribution is its mean (also mode and median)
- Changing mean (centring) shifts the curve left/right
- SD determines steepness of the curve (small σ = steep curve)

Area below the normal curve

- No matter the particular shape of the given normal distribution, the proportions with respect to SD are the same
 - ~68.2% of the area below the curve is within ±1 SD from the mean
 - ~95.4% of the area below the curve is within ±2 SD from the mean
 - ~99.7% of the area below the curve is within ±3 SD from the mean
- We can calculate the proportion of the area with respect to any two
 points

Area below the normal curve

• Say we want to know the number of *SD*s from the mean beyond which lie the outer 5% of the distribution


```
qnorm(p = .975, mean = 0, sd = 1) # upper cut-off
```

[1] 1.959964

11/31

-
-
-

Critical values

If SD is known, we can calculate the cut-off point (critical value) for any
proportion of normally distributed data

```
qnorm(p = .005, mean = 0, sd = 1) # lowest .5%
## [1] -2.575829
qnorm(p = .995, mean = 0, sd = 1) # highest .5%
## [1] 2.575829
# most extreme 40% / bulk 60%
qnorm(p = .2, mean = 0, sd = 1)
## [1] -0.8416212
qnorm(p = .8, mean = 0, sd = 1)
## [1] 0.8416212
. Others known distributions have different of
## [1] 0.8416212
```

Other known distributions have different cut-offs but the principle is the same

Sampling from distributions

- Collecting data on a variable = randomly sampling from distribution
- The underlying distribution is often assumed to be normal
- · Some variables might come from other distributions
 - · Reaction times: log-normal distribution
 - Number of annual casualties due to horse kicks: Poisson distribution
 - Passes/fails on an exam: binomial distribution

· Samples from the same population differ from one another

```
# draw a sample of 10 from a normally distributed
# population with mean 100 and sd 15
rnorm(n = 6, mean = 100, sd = 15)
```

[1] 101.61958 80.95560 89.62080 96.04378 106.40106 86.21514

repeat
rnorm(6, 100, 15)

[1] 80.31573 107.63193 85.82520 99.95288 93.55956 74.73945

Sampling from distributions

- Statistics (\bar{x} , s, etc.) of two samples will be different
- Sample statistic (e.g., $\bar{x})$ will likely differ from the population parameter (e.g., $\mu)$

```
sample1 <- rnorm(50, 100, 15)
sample2 <- rnorm(50, 100, 15)</pre>
```

mean(sample1)

[1] 98.56429

mean(sample2)

[1] 105.4175

Sampling from distributions

- Statistics (\bar{x} , s, etc.) of two samples will be different
- Sample statistic (e.g., $\bar{x})$ will likely differ from the population parameter (e.g., $\mu)$

Sampling distribution

- If we took all possible samples of a given size (say N = 50) from the population and each time calculated \bar{x} , the means would have their own distribution
- · This is the sampling distribution of the mean
 - Approximately **normal**

•

Centred around the true population mean, μ

• Every statistic has its own sampling distribution (not all normal though!)

Sampling distribution

x_bar <- replicate(100000, mean(rnorm(50, 100, 15)))
mean(x_bar)</pre>

[1] 99.99395

• Standard deviation of the sampling distribution is the standard error

sd(x_bar)

[1] 2.122072

 Sampling distribution of the mean is approximately normal: ~68.2% of means of samples of size 50 from this population will be within ±2.12 of the true mean

• Standard error can be estimated from any of the samples

$$\widehat{SE} = \frac{SD}{\sqrt{N}}$$

samp <- rnorm(50, 100, 15)
sd(samp)/sqrt(length(samp))</pre>

[1] 1.872102

```
# underestimate compared to actual SE
sd(x_bar)
```

[1] 2.122072

- If ~68.2% of sample means lie within ±1.87, then there's a ~68.2% probability that \bar{x} will be within ±1.87 of μ

mean(samp)

[1] 98.22903

• SE is calculated using N: there's a relationship between the two

- Allows us to gauge the resampling accuracy of parameter estimate (e.g., $\hat{\mu})$ in sample
- The smaller the SE, the more confident we can be that the parameter estimate ($\hat{\mu}$) in our sample is close to those in other samples of the same size
- We don't particularly care about our specific sample: we care about the population!

The Central Limit Theorem

- Sampling distribution of the mean is approximately normal
- True no matter the shape of the population distribution!
- This is the Central Limit Theorem
 - "Central" as in "really important" because, well, it is!

24/31

Approximately normal

• As *N* gets larger, the sampling distribution of \bar{x} tends towards a normal distribution with **mean =** μ and $SD = \frac{\sigma}{\sqrt{N}}$

- *Distribution* is the number of observations per each value of a variable
- There are many mathematically well-described distributions
 - Normal (Gaussian) distribution is one of them
- Each has a formula allowing the calculation of the probability of drawing an arbitrary range of values

20	121
20	51

- · Normal distribution is
 - continuous
 - unimodal
 - symmetrical
 - bell-shaped
 - it's the right proportions that make a distribution normal!

In a normal distribution it is true that

- ~68.2% of the data is within ±1 SD from the mean
- ~95.4% of the data is within ±2 SD from the mean
- ~99.7% of the data is within ±3 SD from the mean
- Every known distribution has its own critical values

\odot

- · Statistics of random samples differ from parameters of a population
- As N gets bigger, sample statistics approaches population parameters
- Distribution of sample parameters is the **sampling distribution**
- Standard error of a parameter estimate is the SD of its sampling distribution
 - Provides margin of error for estimated parameter
 - The larger the sample, the less the estimate varies from sample to sample

30	121
30	/ 51

Central Limit Theorem

- · Really important!
- Sampling distribution of the mean tends to normal even if population distribution is not normal
- Understanding distributions, sampling distributions, standard errors, and CLT it most of what you need to understand all the stats techniques we will cover

_
_
_
-
_
_
-
 _