From research questions to statistics

Lecture 2

Dr Milan Valášek
31 January 2022

Today

- Point estimates vs interval estimates
- Confidence intervals
- t-distribution

What stats is about (yet again)

- We want to know about the world (population)
- We can only get data from samples
- We calculate statistics on samples and use them to estimate the values in population
- Statistics is all about making inferences about populations based on samples
- If we could measure the entire population, we wouldn't need stats!

Point estimates

- You've heard of the sample mean, median, mode
- These are all point estimates - single numbers that are our best guesses about corresponding population parameters
- Measures of spread ($S D, \sigma^{2}$, etc.) are also point estimates
- Even relationships between variables can be expressed using point estimates

Point estimates

$r=-.07$

Accuracy and uncertainty

- Sample mean \bar{x} is the best estimate $\hat{\mu}$ of population mean but means of almost all samples differ from population mean μ
- Same is true for any point estimate
- SE of the mean expresses the uncertainty about the estimates of the population mean

SE can be calculated for other point estimates, not just the mean

- We can quantify uncertainty around point estimates using interval estimates

Interval estimates

- In addition to estimating a single value, we can also estimate an interval around it
- e.g., mean $=4.13$ with an interval from -0.2 to 8.46
- Interval estimates communicate the uncertainty around point estimates
- There are different kinds of interval estimates
- Important: confidence intervals

Confidence interval

- We can use SE and the sampling distribution to calculate a confidence interval (CI) with a certain coverage, e.g., $90 \%, 95 \%, 99 \% \ldots$
- For a $95 \% \mathrm{CI}, 95 \%$ of these intervals around sample estimates will contain the value of the population parameter
- Let's see an example

Confidence interval

- Population of circles of different sizes

Confidence interval

- Sample from population, estimate mean size

a

Confidence interval

- Calculate the $95 \% \mathrm{Cl}$ around the mean

Confidence interval

- Lather, rinse, repeat...

Confidence interval

- $\sim 5 \%$ don't contain population mean $=95 \%$ coverage

How is it made?

- Easy if we know sampling distribution of the mean
- 95% of sampling distribution is within ± 1.96 SE
- $95 \% \mathrm{Cl}$ around estimated population mean is mean ± 1.96 SE

How is it made?

- Sampling distribution of the mean is normal (as per CLT)
- Middle 95% of the sample means lie within ± 1.96 SE
- We use the same 1.96 SE to construct $95 \% \mathrm{Cl}$ around mean

How is it made?

- Sampling distribution is, however, not known!
- It can be approximated using the t-distribution and s and N

t-distribution

- Symmetrical, centred around 0
- Its shape changes based on degrees of freedom
- As shape changes, so do proportions (unlike with normal)
- In standard normal, middle 95% of data lie within ± 1.96
- In t-distribution, this critical value changes based on $d f$

t-distribution

- t-distribution crops up in many situations
- Always has to do with estimating sampling distribution from a finite sample
- How we calculate number of df changes based on context
- Often has to do with N, number of estimated parameters, or both
- In the case of sampling distribution of the mean, $d f=N-1$

Back to Cl

- $95 \% \mathrm{Cl}$ around estimated population mean is mean ± 1.96 SE if we know the exact shape of sampling distribution
- We don't know the shape so we approximate it using the t distribution
- We need to replace the 1.96 with the appropriate critical value for a given number of $d f$
- For $N=30, t_{\text {crit }}(d f=29)=2.05$
$q t(p=0.975, d f=29)$
\#\# [1] 2.04523

Back to Cl

- $95 \% \mathrm{Cl}$ around the mean for a sample of 30 is $\bar{x} \pm 2.05 \times S E$
- $\widehat{S E}=\frac{s}{\sqrt{N}}$
- $95 \% C I=M e a n \pm 2.05 \times \frac{s}{\sqrt{N}}$
- To construct a $95 \% \mathrm{Cl}$ around our estimated mean, all we need is
- Estimated mean (i.e. sample mean, because $\hat{\mu}=\bar{x}$)
- Sample SD (s)
- N
- Critical value for a t-distribution with $N-1 d f$

Cls are useful

- Width of the interval tells us about how much we can expect the mean of a different sample of the same size to vary from the one we got
- There's a $x \%$ chance that any given $x \% \mathrm{Cl}$ contains the true population mean
- CAVEAT: That's not the same as saying that there's a $\mathrm{x} \%$ chance that the population mean lies within our $\mathrm{x} \% \mathrm{CI}$!
- Cls can be calculated for any point estimate, not just the mean!

Remember this?

$r=-.07$

Remember this?

$r=-.07 ; 95 \% \mathrm{Cl}[-.263, .128]$

Take-home message

- Our aim is to estimate unknown population characteristics based on samples
- Point estimate is the best guess about a given population characteristic (parameter)
- Estimation is inherently uncertain
- We cannot say with 100% certainty that our estimate is truly equal to the population parameter
- Confidence intervals express this uncertainty
- The wider they are, the more uncertainty there is
- They have arbitrary coverage (often $50 \%, 90 \%, 95 \%, 99 \%$)
- Cls are constructed using the sampling distribution
- True sampling distribution is unknown, we can approximate it using the t-distribution with given degrees of freedom
- Cls can be constructed for any point estimate
- For a $95 \% \mathrm{Cl}$, there is a 95% chance that any given Cl contains the true population parameter

