Linear Model 1: A New Equation

Lecture 7

Dr Jennifer Mankin
7 March 2022

Overview

- Reminder: the TAP!
- The Linear Model
- What is modeling?
- Model with continuous predictor
- Model with categorical predictor

Reminder: The TAP

The take-away paper is currently live!

- See Take-Away Paper Information:
- Download the Rmd document to complete
- All information on preparing and submitting the assessment
- All necessary background information, tips, and FAQs

Objectives

After this lecture you will understand:

- What a statistical model is and why they are useful
- The equation for a linear model with one predictor
- b_{0} (the intercept)
- b_{1} (the slope)
- Using the equation to predict an outcome
- How to read scatterplots and lines of best fit

The Linear Model

- Extremely common and fundamental testing paradigm
- Predict the outcome y from one or more predictors (xs)
- Our first (explicit) contact with statistical modeling
- A statistical model is a mathematical expression that captures the relationship between variables
- All of our test statistics are actually models!

Maps as Models

- A map is a simplified depiction of the world
- Captures the important elements (roads, cities, oceans, mountains)
- Doesn't capture individual detail (where your gran lives)
- Depicts relationships between locations and geographical features
- Helps you predict what you will encounter in the world
- E.g. if you keep walking south eventually you'll fall in the sea!

Statistical Models

- A model is a simplified depiction of some relationship
- We want to predict what will happen in the world
- But the world is complex and full of noise (randomness)
- We can build a model to try to capture the important elements
- Gather a sample that (we assume) is representative of the population
- Investigate and quantify the relationships in that sample (ie construct a model)
- Change/adjust the model to see what might happen with different parameters

Statistical Models

- Why might it be useful to create a model like this?
- Can you think of any recent examples of such models?
- One example of modelling you might all be familiar with!

Predictors and Outcomes

- Now we start assigning our variables roles to play
- The outcome is the variable we want to explain
- Also called the dependent variable, or DV
- The predictors are variables that may have a relationship with the outcome
- Also called the independent variable(s), or IV(s)
- We measure or manipulate the predictors, then quantify the systematic change in the outcome
- NB: YOU (the researcher) assign these roles!

General Model Equation

$$
\text { outcome }=\text { model }+ \text { error }
$$

- We can use models to predict the outcome for a particular case
- This is always subject to some degree of error

Linear Model Equation

$$
y_{i}=b_{0}+b_{1} x_{1 i}+e_{i}
$$

- y_{i} : the predicted value of the outcome
- b_{0} : the intercept
- b_{1} : the slope
- $x_{1 i}$: the predictor
- e_{i} : the error in prediction

You may know her as ${ }^{`} y=a x+b$!

Linear Model Equation

$$
y_{i}=b_{0}+b_{1} x_{1 i}+e_{i}
$$

- We will next see:
- How we can create a line that captures the relationship between those two variables
. How we can adapt this general LM equation to describe that line

Visualising the Line

- Where would you draw a line through these dots that best captures where they tend to fall?

Visualising the Line

Visualising the Line

- The data points tend to be higher up on the right and lower down on the left
- So as the variable on x (here, ratings of femininity) increases...
- The variable on y (here, ratings of masculinity) tends to decrease
- This represents a negative relationship between x and y : as one goes up, the other goes down
- Our line captures this by going downwards from left to right

Visualising the Line

- Two key parameters: where the line starts, and its slope

Modeling Gender Ratings

We can make some estimates:

- The line would cross the y-axis somewhere between 8 and 9 (close to 9)
- $b_{0} \approx 8.5$
- Every time we go up one point on the femininity scale, masculinity goes down by a little less than one point
- $b_{1} \approx-0.8$

Modeling Gender Ratings

$$
y_{i}=b_{0}+b_{1} x_{1 i}+e_{i}
$$

- y_{i} (outcome): Masculinity
- $x_{1 i}$ (predictor): Femininity
- b_{0} (intercept): the predicted value of masculinity when femininity is 0
- b_{1} (slope): change in masculinity associated with a unit change in femininity

Masculinity $_{i}=b_{0}+b_{1}$ Femininity $_{1 i}+e_{i}$

Modeling Gender Ratings

How do we get the real numbers?

```
##
## Call:
## lm(formula = gender_masc ~ gender_fem, data = gensex)
##
## Coefficients:
## (Intercept) gender_fem
## 8.8246 -0.7976
```

Adapt our equation to include the real b values:
Masculinity $_{i}=8.82-0.8 \times$ Femininity $_{1 i}+e_{i}$

Predicting Gender

- We can now use this model to predict someone's rating of masculinity, if we know their rating of femininity
- someone who doesn't identify strongly with femininity: gender_fem $=3$
- What would the model predict for this person's masculinity rating?

$$
\text { Masculinity }_{i}=8.82-0.8 \times \text { Femininity }
$$

Predicting Gender

Masculinity $_{i}=8.82-0.8 \times$ Femininity $_{1 i}$

- Masculinity $_{i}=8.82-0.8 \times 3$
- Masculinity ${ }_{i}=6.42$

So, someone with femininity $=3$ is predicted to have a masculinity rating of 6.42

- This is subject to some (unknowable!) degree of error

Predicting Gender

Someone with a femininity rating of 3 is predicted to have a masculinity rating of 6.42

Interim Summary

- The linear model predicts the outcome y based on a predictor x
- General form: $y_{i}=b_{0}+b_{1} x_{1 i}+e_{i}$
- b_{0}, the intercept, is the value of y when x is 0
- b_{1}, the slope, is the change in y for every unit change in x
- The slope, b_{1}, is the key piece of information, because it represents the relationship between the predictor and the outcome
- Up next: categorical predictors

Words and Colours

In Tutorial 5, we looked at synaesthesia and imagery

- Let's revisit those ideas using the linear model!
- If I wanted to predict the next random person's overall imagery score...
- What would be the most sensible estimate?

Making Predictions

Making Predictions

- Without any other information, the best estimate is the mean of the outcome
- But we do have more information!
- Grapheme-colour synaesthetes score higher than non-synaesthetes on overall imagery on average

We could make a better prediction if we knew whether that person

- was a synaesthete
- Use the mean score in the synaesthete vs non-synaesthete groups

Modeling Imagery

For non-synaesthetes, mean overall imagery $=3.25$

- We will treat them as the baseline and give them a group code of 0

Modeling Imagery

For synaesthetes, mean overall imagery $=3.59$

- We will treat them as the comparison group and give them a group code of 1

Modeling Imagery

We want to write an equation that will give a different prediction depending on whether someone is a synaesthete or not

- $y_{i}=b_{0}+b_{1} x_{1 i}+e_{i}$
- $y=$ Overall imagery score
- $x_{1}=$ Synaesthesia ($0=$ No, $1=$ Yes $)$
- OverallImagery ${ }_{i}=b_{0}+b_{1}$ Syn $_{1 i}$
- How do we find out b_{0} and b_{1} ?

Estimating the Line

- Where would you draw a line through these dots that best captures where they tend to fall?

Estimating the Line

This line is our linear model, with the same properties as the last one!

Modeling Imagery

- The line starts from the mean of the non-synaesthete group $=3.25$
- This is the intercept, b_{0}
- The predicted value of the outcome when the predictor is 0
- Our predictor is syn group, where no synaesthesia $=0$
- When we switch from looking at non-synaesthetes to synaesthetes, predicted overall imagery changes by 0.34
- This is the slope of the line, b_{1}
- The change in the outcome for every unit change in the predictor
- Here, a "unit change" means switching groups, from 0 (non-syn) to 1 (syn)

$$
\text { OverallImagery }_{i}=3.25+0.34 \times \text { Syn }_{1 i}
$$

Using lm()

Checking Predictions

If I wanted to predict the next random person's overall imagery score...

- First, ask them if they're a synaesthete or not!
- "Yes" = 1, "No" = 0

$$
\text { OverallImagery }_{i}=3.25+0.34 \times \text { Syn }_{1 i}
$$

If yes, then $S y n_{1 i}=1$:

- OverallImagery $y_{i}=3.25+0.34 \times 1$
- OverallImagery $y_{i}=3.59$

If no, then $S y n_{1 i}=0$:

- OverallImagery $_{i}=3.25+0.34 \times 0$
- OverallImagery $y_{i}=3.25$

So, we can predict imagery score based on group membership, just as we predicted masculinity score based on femininity score earlier!

Welcome to the World of lm()

- The linear model (lm()) will be our focus from here on out
- If this is unfamiliar to you, it's highly recommended that you revise linear equations!
- Visualisation on the Analysing Data website
- Khan Academy intro to linear equations
- Learning Statistics with R - see Chapter V, Linear Regression
- Linear models will be crucial for the rest of your degree

Summary

- The linear model expressed the relationship between at least one predictor, x, and an outcome, y
- Linear model equation: $y_{i}=b_{0}+b_{1} x_{1 i}+e_{i}$
- Key for statistical testing is the parameter b_{1}, with expresses the relationship between x and y

Used to predict the outcome for a given value of the predictor

- Next week: LM2 - significance and model fit
- Don't forget to do the TAP!

