The Linear Model 3: Return of the y_{i}

Lecture 9

Dr Milan Valášek
28 March 2022

\square	
\square	

Stats wars

- LM1: A New Equation
- LM2: R^{2} strikes back
- LM3: Return of the y

Today

- Extending the linear model
- Multiple predictors
- Transforming variables in a model
- Mean-centring
- Scaling
- z-transforming

Basic linear model

outcome $_{\text {obs }}=$ intercept + slope \times predictor $_{\text {obs }}+$ residual $_{\text {obs }}$

$$
y_{i}=b_{0}+b_{1} \times x_{1_{i}}+e_{i}
$$

- The model is a line through the scatter of data
- The line shows what the value of outcome for a given value of predictor should be according to the model
- Residual is the difference between prediction and observation

Mean as linear model

- The simplest linear model is the mean
- $y_{i}=b_{0}+e_{i}$
- $b_{0}=\operatorname{Mean}(y)$
- That's literally the same as $y_{i}=b_{0}+0 \times x_{1_{i}}+e_{i}$
- Mean is the intercept-only model: a linear model where all b coefficients other than b_{0} have been set (fixed) to zero

Other coefficients?

- Just like we can fix b_{1} to zero in $y_{i}=b_{0}+0 \times x_{1_{i}}+e_{i}$, we can fix any other b coefficient as well
- We can think of the basic single-predictor linear model as

$$
y_{i}=b_{0}+b_{1} \times x_{1_{i}}+0 \times x_{2_{i}}+0 \times x_{3_{i}}+\cdots+0 \times x_{n_{i}}+e_{i}
$$

- We're just ignoring all but one of the infinity possible predictors we could put in the model
- Not including a predictor in a model is the same as saying that there is no relationship between that variable and the outcome
- It's just said implicitly rather than aloud
- We can include them in the model if we wish to so that their associated b coefficient gets estimated, rather than set to 0

Variables are dimensions

- We've been representing the mean as a line on a plot of 2 variables
- It can also be represented as a point on the number line
- Every predictor adds a dimension

More complex models

- Including more than one predictor allows us to model the outcome variable in a more sophisticated way
- Every slope (b_{n} coefficient, for $n>0$) expresses the relationship between a given predictor and the outcome after the relationship of all other predictors has been accounted for
- A relationship - causal or not - between two variables can drastically change when another variable is taken into account
- It's important to consider all variables with a known effect when modelling a relationship (especially in observational research)
- Say we find a relationship between home environment and mental health
- However, mental health has a strong genetic component
- Parental predisposition to worse mental health is also linked to home environment
- Can we really claim a relationship between environment and mental health if we don't consider genetics?

Breast is best but is it smartest?

- Lot of ink has been spilled over the claim that breastfeeding leads to increase in child IQ (BBC, The Guardian, The New York Times, FiveThirtyEigth)
- When assessed at face value breastfed children have higher IQ
- Whether or not a person breastfeeds their child is also linked to things like socio-economic status or the person's IQ
- When these effects are adjusted for, the effect shrinks substantially - 3 IQ points difference is a generous estimate and even that has been contested

The linear model allows us to build these more nuanced models and get closer to the Truth about the Universe ${ }^{\text {TM }}$

Mutiple predictors in practice

- Today's example focuses on data about babies' birth weights and parental characteristics (source)

ID	Length	Birthweight	Headcirc	Gestation	smoker
<dbl>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>
1360	56	4.55	34	44	0
1016	53	4.32	36	40	0
462	58	4.10	39	41	0
1187	53	4.07	38	44	0
553	54	3.94	37	42	0
1636	51	3.93	38	38	0
820	52	3.77	34	40	0
1191	53	3.65	33	42	0
1081	54	3.63	38	38	0
822	50	3.42	35	38	0
1-10 of 42 rows \| 1-6 of 16 columns			Previous	$\underline{2} 3$	$4 \leq 5$ Next

Birth weight, mother's age, and gestation time

Fit model using lm()

```
## Intercept-only model
m_null <- lm(Birthweight ~ 1, bweight)
## Add mother's age as predictor
m_age <- lm(Birthweight ~ mage, bweight)
# alternatively update(m_null, ~ . + mage)
## Add gestation duration as predictor
m_gest <- lm(Birthweight ~ mage + Gestation, bweight)
# same as update(m_age, ~ . + Gestation)
```


Results - null model

```
summary(m_null)
##
## Call:
## lm(formula = Birthweight ~ 1, data = bweight)
##
# Residuals:
## Min 1Q Median 3Q Max
## -1.39286 -0.37286 -0.01786 0.33464 1.25714
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.31286 0.09318 35.55 <0.0000000000000002 ***
## --- 3.31286 0.00318,
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6039 on 41 degrees of freedom
```


Results - Mother's age as predictor

```
summary(m_age)
##
## Call:
# lm(formula = Birthweight ~ mage, data = bweight)
##
# Residuals:
# Min 1Q Median 3Q Max
## -1.39275 -0.37288 -0.01786 0.33473 1.25702
# Coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.31238583 0.44072153 7.516 0.00000000362 ***
## mage 0.00001845 0.01685112 0.001 0.999
## --
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6114 on 40 degrees of freedom
## Multiple R-squared: 2.996e-08, Adjusted R-squared:
0.025
## F-statistic: 1.199e-06 on 1 and 40 DF, p-value: 0.9991
```


Results - M's age and gestation time

```
summary(m_gest)
##
## Call:
# lm(formula = Birthweight ~ mage + Gestation, data = bweight)
##
# Residuals:
\# Min 1Q Median \(\quad\) 3Q Max
#-0.77485 -0.35861 -0.00236 0.26948 0.96943
Coefficients
# Estimate Std. Error t value Pr}(>|t|
## (Intercept) -3.0092887 1.0567990 -2.848 0.00699 **
## mage -0.0007953 0.0120469 -0.066 0.94770
## Gestation 0.1618369 0.0258242 6.267 0.000000221 ***
## --
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4371 on 39 degrees of freedom
## Multiple R-squared: 0.5017, Adjusted R-squared: 0.4762
## F-statistic: 19.64 on 2 and 39 DF, p-value: 0.00000126
```


Model prediction

- Linear model can tell us the expected value of outcome for any combination of predictor values
- According to our model, expected birth weight for a baby whose mother is 29 years old and whose gestation period was 38 weeks is:

$$
\begin{aligned}
\hat{y} & =-3.01+0 \times \text { age }+0.16 \times \text { gestation } \\
& =-3.01+0 \times 29+0.16 \times 38 \\
& =-3.01+0+6.08 \\
& =3.07
\end{aligned}
$$

- Let's compare to observations in sample
bweight \%>\% filter(mage == 29 \& Gestation == 38) \%>\% rmarkdown::paged_table()

| ID | Length
 $<\mathrm{dbl}$ | Birthweight
 $<\mathrm{dbl}>$ | Headcirc
 $<\mathrm{dbl}>$ | Gestation
 $<\mathrm{dbl}>$ |
| ---: | ---: | ---: | ---: | ---: | | smoker |
| ---: |
| $<\mathrm{dbl}>$ |,

1 row | 1-6 of 16 columns

Negative intercept?!

- The intercept always tells us the value of the outcome when all predictors are 0
- Not always sensible (instantaneous childbirth in women aged 0 is not a common occurrence)

Transforming variables in the model

- We can apply various transformations to variables in the model
- Centring, scaling, standardising
- Non-linear transformations are also possible (e.g., log-transform)
- Transforming variables changes the interpretation of the coefficients

Centring

- Centring predictors changes the interpretation of the intercept
\# untransformed predictor
lm(Birthweight ~ Gestation, bweight)
\#\#
\#\# Call:
\#\# lm(formula $=$ Birthweight \sim Gestation, data $=$ bweight)
\#\#
\#\# Coefficients:
\#\# (Intercept) Gestation
\#\# -3.0289 0.1618
\# centred predictor
bweight <- bweight \%>\%
mutate(gest_cntrd = Gestation - mean(Gestation, na.rm=TRUE))
lm(Birthweight ~ gest_cntrd, bweight)
\#\#
\#\# Call:
\#\# lm(formula = Birthweight ~ gest_cntrd, data = bweight)
\#\#
\#\# Coefficients:
\#\# (Intercept) gest_cntrd
\#\# $\quad 3.3129$ - 0.1618

Centring

- What's the weight of a baby born to a "typical" mother in terms of age and pregnancy duration

```
# centre mother's age
bweight <- bweight %>%
    mutate(age_cntrd = mage - mean(mage, na.rm=TRUE))
lm(Birthweight ~ age_cntrd + gest_cntrd, bweight) %>% summary()
##
## Call:
## lm(formula = Birthweight ~ age_cntrd + gest_cntrd, data = bweight)
##
## Residuals:
## Min 1Q Median MQ Max
## -0.77485 -0.35861 -0.00236 0.26948 0.96943
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 3.3128571 0.0674405 49.123 < 0.0000000000000002 ***
## age_cntrd -0.0007953 0.0120469 -0.066 0.948
## gest_cntrd 0.1618369 0.0258242 rrarer 0.267 0.000000221 ***
## --
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4371 on 39 degrees of freedom
## Multiple R-squared: 0.5017, Adjusted R-squared: 0.4762
## F-statistic: 19.64 on 2 and 39 DF, p-value: 0.00000126
```


Scaling

- Scaling predictors or outcome changes the interpretation of the slopes

```
# untransformed outcome
lm(Birthweight ~ gest_cntrd, bweight)
##
## Call:
## lm(formula = Birthweight ~ gest_cntrd, data = bweight)
##
## Coefficients
## (Intercept) gest_cntrd
## 3.3129 0.1618
# scaled outcome
bweight <- bweight %>%
    mutate(bweight_g = Birthweight / 2.205 * 1000) # 2.205 lbs in kg
lm(bweight_g ~ gest_cntrd, bweight)
##
## Call:
## lm(formula = bweight_g ~ gest_cntrd, data = bweight)
##
## Coefficients
## (Intercept) gest_cntrd
## 1502.43 -73.39
```


Standardising

- Sometimes it's useful to talk about change in outcome associated with a $1 S D$ change in predictors
\# untransformed predictor
lm(Birthweight ~ Gestation, bweight)
\#\#
\#\# Call:
\#\# lm(formula = Birthweight ~ Gestation, data = bweight)
\#\#
$\begin{array}{lcr}\text { \#\# Coefficients: } & \\ \text { \#\# (Intercept) } & \text { Gestation } \\ \text { \#\# } & -3.0289 & 0.1618\end{array}$
\# standardised predictor
bweight <- bweight \%>\%
mutate(gest_z = scale(Gestation))
lm(bweight_g ~ gest_z, bweight)
\#\#
\#\# Call:
\#\# lm(formula = bweight_g ~ gest_z, data = bweight)
\#\#
\#\# Coefficients
\#\# (Intercept) gest_z
\#\#
gest_z
(3)

It's all the same model!

Standardised coefficients

- Standardised coefficients are equivalent to b coefficients in a model where both the predictors and the outcome have been ztransformed
- We'll call them B to distinguish them from "raw" coefficients b but there is a lot of confusion in literature about the notation (you may see b, B, β, or Beta used to mean either of the two)
B expresses the change in outcome in terms of number of $S D$ as a result
- of 1 SD change in predictor

Standardised coefficients

- Handy function - QuantPsyc: :lm.beta()
- Only gives B for slopes, not intercept!
m_gest <- lm(Birthweight ~ mage + Gestation, bweight)
\# raw coefficients (b)
m_gest \%>\% coef()

\#\#	(Intercept)	mage	Gestation
$\# \#$	-3.0092887340	-0.0007952874	0.1618368592

\# standardised coefficeints (B)
m_gest \%>\% QuantPsyc::lm.beta()

\# mage Gestation

\#\# -0.007462176 0.708383324
\# same as if we z-transform everything ourselves
lm(scale (Birthweight) \sim scale(mage) + scale(Gestation), bweight) \%>\% coef() \%>\% r_{1}
\#\# (Intercept) scale(mage) scale(Gestation)
\#\# 0.000000000 $\quad-0.007462176 \quad 0.708383324$

Take-home message

- Linear model can be easily extended to more than one predictor
- Each predictor entered into the model adds an extra dimension to the space in which the model exists
- Each b coefficient (except for b_{0}) is a slope of the regression plane in its dimension

Both including and omitting a variable is a claim about its relationship

- with the outcome
- Ab coefficient for a predictor tells us about the relationship between the predictor and the outcome after accounting for the relationship between all other predictors and the outcome
- Intercept may not be a sensible value if variables are not transformed
- Transforming variables changes the interpretation of the coefficients
- Standardised coefficients, B, express the change in outcome in terms of number of $S D$ as a result of $1 S D$ change in predictor

